Parametric and Logical Types
for Model-Driven Engineering

Rick Murphy
U.S. Government
email: rick@rickmurphy.org

Abstract—This technical paper introduces a novel UML Pro-
file to construct parametric and logical types for the advanc-
ing model-driven engineer. Parametric types admit parametric
polymorphism under a relational interpretation of types. We
introduce parametric disjunctive and conjunctive types that lift
operations from the object to type levels, constructively. We
call them logical types. Logical types represent a fragment of
intuitionistic higher order logic under the Brouwer-Heyting-
Kolgomorov (BHK) interpretation. We specify their construction
informally in UML sequence diagrams and their semantics and
operations on them formally in intuitionstic logic, category theory
and commutative diagrams.

We explain the advantages of parametric and logical types over
the naive meta model approach and the approach to types and
relations used in QVT, MOF and OCL. We provide semantics
of parametric relational types as Kliesli categories; parametric
logical data and type constructors as functors; and embedded
product types as Hom-functors. We also provide the semantics
of parametric and logical types as elementary and effective
topoi. We prove the soundness and completeness of the relevant
fragment of the BHK interpretation in natural deduction and
extend the effective topoi to an interpretation of realizability. A
survey of the publicly available literature reveals no evidence of
a similar approach for the advancing model-driven engineer. The
approach is novel in its definition of the profile and application
of algebraic types in model-driven engineering.

I. INTRODUCTION

Model-Driven engineers have sought to clarify, or formal-
ize, the interpretation of standards and associated “models”
through ontology, semantics and logic. Logic is sometimes
seen as external to “modeling” and ontology a competitor.
Integrating first order logic appears unattainable for practical
purposes and type specification remains subordinate to set
theoretic, class-based inheritance semantics.

Despite our best efforts, some desired outcomes remain out
of reach. Proposals for unification through “meta modeling”
such as the Meta Object Facility (MOF) naively underestimate
the complexity of a required solution. Query View Transfor-
mation (QVT) remains largely unimplemented.

While we do not claim to solve the larger challenges of uni-
fication and transformation, this paper returns to foundations
of programming languages in describing a technical approach
using parametric and logical types we believe required to
achieve the desired outcomes.

A. Overview

The rest of this paper is organized as follows. Section
II reviews standards literature on parametric types as UML

templates with references to programming languages and
specification. Section III describes the formulation of logical
types in a UML profile with data and type constructors. It
contrasts parametric and logical type with a naive meta model
approach and explains the technical advantage of parametric
and logical types. Section IV illustrates the construction of and
operations on logical types and describes their relational, set-
and category- theoretic semantics. It contrasts parametric and
logical types with QVT 1.3 and its dependency on MOF 2.5
and OCL 2.4 and explains the advantages of parametric and
logical types over QVT. Section V explains the proof calculus
and model theoretic interpretation of parametric and logical
types in a fragment of Heyting algebra with natural deduction.
We prove logical types are sound and complete. Section VI
extends the interpretation of the parametric and logical types
to realizability semantics in the effective topos. Section VI
concludes and proposes future directions for our research.

II. PARAMETRIC TYPES

It well known that classes and data types are interpreted as
sets of objects and values. [UML 2.5 18.3, UML 2.5 10.2] Less
known is the interpretation of classes and types as relations.
Reynolds first proposed to generalize homomorphisms from
functions to relations for free algebras. His abstraction theorem
introduces relational and parametric types. [Reynolds, 1983]

Consider the list L of ordered pairs L = [(0, True),(1, False)].
The relation inferred from the list is the parametric type Int
Bool : the relation between the types of elements of ordered
pairs in L. The counterintutive juxtaposition of Int and Bool
may cause suspicion. Consider the more familiar declaration
List Nat, the list of natural numbers where List is parametrized
by the type of its elements : Nat.

More generally, the expression T A is the type constructor
T parametrized by the type parameter A. The set of type
parameters may be called the carrier set of T. Type parameters
are polymorphic allowing the substitution of monomorphic
types like Bool, Int or Nat for A. Any parametric type T A
can be interpreted as the relation 7 : 7' «<— A . UML
allows parametrized class and data type by declaration [UML
2.59.3.1].

Despite limited support for parametric types in graphical
notation, some class and data type diagrams allow depiction
of type parameters. See Figure 1. Observe the familiar box
representing a class or data type labeled T is annotated with a
box at its top right outlined in dash style. The annotated box

represents the binding > of the parameter A to the template
TA.

Figure 1. Parametric Type

TA>A |
-]

T

Templates are model elements that are parametrized by
other model elements. [UML 2.5 7.3.1] The term template
originates in the C++ language which defines class and
function templates. A template signature S on templatable
elements 7' X defines a set of template parameters P bound
to model elements Stx > {TX : p € P}.

We read from Figure 1, the template signature Spa >
{TA : A € P} binds parameter A to templateable ele-
ment T'A. The parameters in the signature are the “formal
parameters” for which “actual parameters” will be substituted
in a binding. Given a substitution, lets say of monomorphic
type Int for parameter A, an operational semantics allows for
instantiation of relational type T Int.

Templates derive from a more general formulation of
parametric types. Mainstream programming languages like
Java and C# call parametric types generics. [Bracha,
1998] Software architecture and algebraic specification allow
parametrization of modules [Goguen, 1996] and algebraic
specifications [Mossakowski, 2004]. Whereas today’s main-
stream programming languages implement parametric types,
model-driven engineering can and must offer comparable
syntax and semantics.

III. LoGICAL TYPES

Current standards specify operations and operators in an
object language. A class could define a boolean operation that
implements bitwise boolean (&, |) or boolean logical (&&,
) operators. [UML 2.5 9.6] OCL defines the semantics of
the following boolean operators for basic types (and, or, xor,
implies, not). [OCL 2.4, A 2.1.3]

“Meta models” typically characterize inheritance hierarchies
of imperative programs in the abstract syntax of a “meta
language.” The meta language might specify a class or type.
The object language inherits properties and operations and
may represent the instance of the class or value of type, or
a specialization at a level below the meta language.

Figure 2 illustrates a naive approach to type specification
taken from an Object Management Group submission. Type
semantics were imputed to be a class-like structure with prop-
erties. Constructors and operations were disallowed. Values
comprised the extent imputed to be set. Union and Intersection
contained no properties other than those contained in Type.
Generalization implied intensional equality. No other model
element specified the semantics of union or intersection.

Figure 2. Naive Metamodel Approach
Type

| Intersection |

We conservatively extend the use of metamodels with
parametric types that introduce a typed logic into our meta
language. We call them logical types because they lift logic
from the object language to the type system. See Figure 3.

Observe the parametrized type Pair(A, B). Pair(A, B)
lifts conjunction into the type system. Pair{A, B) has
two type parameters A and B representing the conjunctive
operands. Type parameters are polymorphic and we construct
a value p of Pair(A, B) from constructor Pair(a: A,b: B)
substituting values of monomorphic types for polymorphic
type parameters. As expected, the value p includes references
to both operands reduced to values of monomorphic types, or
their references. Notice that Pair(A, B) has two properties
lPrj A, the left projection, and rPrj B, the right
projection, the types of which are the type parameters A and
B respectively. References to values of monomorphic types
for each respective operand is bound during construction. The
operation fst returns the binding of type parameter A. snd
returns the binding of type parameter B. Pair(A, B) may also
be called product.

Figure 3. Applied Profile with Logical Types

T
TA>A o
_ |1B=B | TL=L

. |TR=R |
aTypeConstructors
Either<L.R>

«DataConstructors
aTypeConstructors
Pair<A,B>

attibutes

operations
+Either{1: L,r: R)
+isRight() : Boolean
+isLeft() : Boolean

-IPri: A
-tPrj: B

operations
+Pair(a- A,b- B): Pair<A B=
+st(): A

+snd() : B

= B
T «DataConstructors
Right<R>

«DataConstructors
Left<L>

= operations
operations = -
Left(|- L) : Ether<L R> A R

Now that we have introduced conjunction, we likewise lift
disjunction into the type system with the parametric type
FEither(L,R). A value e of Fither(L,R) also has two type
parameters L and R representing the disjunctive operands.
Notice the names of the two type parameters L and R reflect
the mnemonics left and right. Construction of Left(L) and
Right(R) return their respective binding to type Either(L, R)
such that the value e has a reference to only one of the
operands, the other remains unevaluated. Either(L,R) is
abstract and construction proceeds by binding a value of a

monomorphic type in the constructor of either Left(L) or
Right(R). Left(L) and Right(R) inherit boolean operations
that test for identity. Either(L, R) may also be called sum or
coproduct.

We can reason constructively using the type system with
logical types. Reasoning constructively means providing a
witness to the proof of a proposition. [Wadler 2015] Consider
a propositional logic with negation and implication. A con-
structive proof of DeMorgan’s Law (P A Q) <= (—=P)V
(—Q) with parametric and logical types would have the type
Pair(A, B) — Not (Either (Not A),(Not B)). See Figure
4. Given predicate Not a = forall. a — Bool, witness
is evaluated and the proof given by pattern matching on the
structure of the data constructors Left id and Right id and
their application to the respective arguments in Pair(z,y).

Figure 4. Constructive Witness
type Not a = a -> Bool

eval :: Pair Bool Bool -> Not (Either (Not Bool) (Not Bool))
eval (Pair(x,y)) (Left w) = u x
eval (Pair(x,y)) (Right u) =uy

-- true
witness = eval (Pair(True,True)) (Left id) &&
eval (Pair(True,True)) (Right id)

Types in UML have either value specifications [UML 2.5,
8.6.22] derived from kinds of value classifiers [UML 2.5,
7.5.3.1] or are primitive in that they have no notation [UML
2.5, 21.3]. Value specifications are described as parameterable
elements that may be exposed as a formal template parameter
and provided as the actual parameter in the binding of a
template. Primitive types are declared rather than constructed
and most often constrain attribute values in a user defined
class.

The notion of type and data constructors is absent from the
UML 2.5 and other OMG standards. We extend the standards
with a UML profile that allows type construction from type
and data constructors. The profile is small requiring only two
stereotypes : <DataConstructor> and «TypeConstructor> as
extensions to the base class Class. '

Notice that we have applied our small profile to Pair(A, B)
and FEither(L,R). Left and Right are annotated with the
stereotype <DataConstructor>. Values are constructed only
from data constructors in adherence to the “no junk” prin-
ciple. Data constructors construct values from a value of a
monomorphic type. For example, Left True constructs a value
of type Either <= (Left <= Idp,.i, R). Alternatively Java
syntax represents this type as Fither(Left(Bool(?)),(?)).

Type constructors are relational. A type is indexed by
the monomorphic type substituted for the polymorphic type
parameter(s). Constant types like Bool or Int are interpreted
as identity relations Idp,, : Bool <= Bool and Idj,,; :
Int <= Int respectively. For types A : A <= A’ and B :

'Profiles [UML 2.5 12.3] is the correct extension for type construction.
Recall EMOF and CMOF do not import templates from UML. [MOF Core
2.5.1 EMOF 12.4, CMOF 14.4] It is well known that generics are implemented
separately as ECore.

B <= B’ therelation A x B: (A x B) «<— (A’ x B
meaning pairs are related if their components are related. The
relation A — B : (A — B) <= (A’ — B’) is defined by (f,
MHeA—-B < V(x,2) €A (fx, f/2') € B meaning
functions are related that takes related arguments into related
values. Further, any type T can be interpreted as the relation
7:T <= T. [Wadler 1989]

Functional programmers will immediately recognize logi-
cal types. While the naive meta-model approach allows the
assertion of an extent subject to intensional constraints under
set-theoretic inheritance the advantage of logical types should
be immediately obvious. (a) Logical types lift logic from the
object language to the type system. We can reason with logic
about types. (b) Logical types are constructive. The type and
data constructors provide syntax and semantics of the logic.
Constructive means more than having a constructor which the
naive metamodel approach obviously lacks. The construction
of a value of the type is considered a witness satisfying a proof
of a proposition under the Curry Howard Correspondence
[Wadler 2015]. Proofs describe algorithms from which we
may formulate functional programs. The logic is intutitionistic
rather than classical. [Pfenning 2000] We do not assert the law
of excluded middle. (c) Logical types are relational because
they are parametric. (d) Logical types allow parametric rather
than ad-hoc polymorphism. Parametric polymorphism applies
to a uniform range of types with common structure. [Strachey
1967]

IV. CONSTRUCTION OF AND OPERATIONS ON
PARAMETRIC AND LOGICAL TYPES

Parametric types are called generics in mainstream program-
ming languages. This section provides the semantics of and
illustrates the construction of and operations on parametric
and logical types for model-driven engineering. It also explains
their technical advantages over types and relations in QVT 1.3
and its dependencies on MOF 2.5, OCL 2.4.

An incomplete analysis reveals MOF 2.5 does not import
UML Templates. OCL 2.4 defines TemplateParameterType
without reference to UML Templates and admits only the
informal semantics that TemplateParameterType “refer[s] to
generic types” and is “used in the standard library to represent
the parameterized collection operations.” [OCL 8.2] OCL
collections are not relational, they are set theoretic. [OCL
11.6] Collections are the only parametric types in the OCL
standard library. [OCL 11] Further, OCL informally claims
the collection type “is actually a template type with one
parameter.” [OCL 11.6] OCL semantics described in UML do
not differentiate values or evaluations for collection types as
template parameter types. OCL values and evaluation packages
do not admit function or relation. [OCL 10, 11] QVT 1.3
claims a “user friendly Relations meta-model and language”
specified in natural language and first order predicate logic
and a “standard transformation for any relations model to a
trace models and a Core model with equivalent semantics.”
[QVT 6.1] QVT also defines TemplateParameterType without
reference to UML Templates. It does not allow user defined

parametric types and its only parametric types are those in the
standard library [QVT 8.2.2.26] Its relations language specifies
homomorphisms and constraints rather than relations. [QVT
7.1, 7.2] The QVT standard library for relations is the OCL
standard library. [QVT 7.12] Although the standard library for
operational mappings defines operations that return parametric
types, the types returned are set theoretic. Operations do not
return function or relation. [QVT 8.3.4 - 8.3.18]

Though incomplete, our analysis reveals QVT, MOF and
OCL substantially reject Reynolds’ approach to abstraction
and parametric types. [Reynolds 1983] They are not higher
order. Their specification is informal, object inheritance en-
hanced with object-level operations. There is no formal object
calculus despite its availability. [Abadi 1995] Transformation
is ad-hoc rather than parametrically polymorphic. Its claim
to relations reveals homomorphisms and constraints rather
than relational semantics. And its informal collections only
approach to parametric types restricts their application signifi-
cantly less than even mainstream programming languages like
Java and C#.

QVT 1.3 depends on MOF 2.5 and OCL 2.4. Despite the
early optimism surrounding the standardization of QVT, its au-
thors report only two discouraging implementations of QVTr,
its relations language, and no implementations of QVTc, its
core language. Most revealing for an OMG standard, there
are no commercial implementations, since 2002. In response,
Willink proposes three new intermediate languages and a
dependency on the Action Language Foundation for UML
(ALF). In his “progressive architecture approach.” [Willink
2016] We do not discuss the progressive architecture approach
or ALF.

Our novel UML profile offers technical advantages over
types and relations in QVT, MOF and OCL as explained in
the examples below. Example A : Left Disjunction illustrates
the binding of a monomorphic type to a polymorphic type in
the Left disjunct using a set theoretic interpretation of the pa-
rameters to build intuition. Example B : Conjunction proceeds
with relations on Pair in the set theoretic function space where
the parameters PlusOne and Nat. Example C : Composition
and Parametricity provides insight into the effective use of
abstraction rather than type construction. We demonstrate
composition of parametric and logical types with polymor-
phic type variables and theorems induced by parametricity.
[Wadler 1989] Example D : Categorical Semantics provides
an incomplete categorical semantics from earlier examples.
We explain 1) relational type constructors in Rel the Kleisli
category of Set; 2) functors on data and type constructors; 3)
the embedding of products in Set, the category of sets with the
Hom functor; and 4) an incomplete examination of elementary
and effective topoi using relational type constructor Pair with
function and natural numbers parameters.

A. Left Disjunction : (Left <= Bool) — (Either <= ((Left
<= Bool) <= R))

and
using

Given parametrized data constructors
Right(R) and type constructor

Left(L)
Either(L, R),

set theoretic type parameters we interpret the left data
constructor as Left <= Bool and the type constructor as
Either <— ((Left <= Bool) <= R). Data construction
proceeds by substituting an instance of the monomorphic
type Bool for the polymorphic type parameter L in Left.
See Figure 5. Notice Left(L) is stereotyped appropriately as
<DataConstructor>. Type construction of Either(L, R)
proceeds with the substitution of the actual parameter for
the formal for type parameter L. Type parameter R remains
unevaluated.

Notice the result e is typed Either <= ((Left <=
Bool) <= R) representing the left disjunct. Java generics
programmers will recognize the syntax in step 9 of the
sequence diagram as Either(Left(Bool), (?)). The right dis-
junct proceeds analogously as FEither <= (L <=
(Right <= Bool)).

Figure 5. Left Disjunction

J «DataConstructors
:Leftel>
2
|
| H
|
|
| T

|
| | 4 binding

: TemplateBinding

|3 substitute(f=L, a=Bool)

«TypeConstructors
:Either<L,R>

i

i| - - = : TemplateBinding

(Left Bool)

| 7 substiute(f=L, a=Left Bool)

i i
| i i \
| | |
|
| | | H
| I I |
| i i
| | | i
! | | | 8 bincing
T |
|
I
i
i

Reynolds showed that the standard interpretation of the first
order typed lambda calculus in the category of sets cannot
be extended to an interpretation of the second order typed
lambda calculus. [Reynolds, 1984] However, his notion of
what constitutes the extension of a second order from first
order interpretation was later narrowed to show the exclusion
was due to the non-constructive nature of sets. Hyland showed
it possible for elementary toposes to embed the second order
lambda calculus in completely standard way. [Hyland 1982]

An elementary topos is an interpretation of higher order
constructive logic in which polymorphic types are interpreted
as sets, functions interpreted as exponential and products inter-
preted as indexed collections. Pitts showed the completeness
and full embedding of the second order typed lambda calculus
in a topos. [Pitts 1987] Note this result does not contradict
Reynolds due to the absence of the Law of Excluded Middle
in intuitionistic logic. We discuss the effective topos below
reminding the reader that logical types are constructive and
intutitionistic.

B. Conjunction : (Pair < ((AxB) < (A'xB’))) —
(Pair < (A x B))

Recall the carrier set of Pair(A, B) is the product A x B
and that pairs are related if their components are related. The
relation A x B : (A x B) <= (A’ x B’) is defined by
((z,y),(2',y) € Ax B < (z,2') € A and (y,y') €
B. We examine the special case where given (f X g) <=
(z,y) — (fz, gy) again under a set theoretic interpretation of
the parameters. [Wadler 1989] See Figure 6.

Construction proceeds with the substitution of both
monomorphic actual parameters for both polymorphic formal
parameters in the data constructor resulting in the binding
Pair < ((PlusOne <— (T <= R)) x (Nat <
A)). Type construction proceeds similarly resulting in the
binding of type Pair <= ((PlusOne <= ((Nat <
A) <= (Suc <= (Nat < A)))) x (Nat <= A)).
Note the result type p in familiar Java generics syntax is
Pair{PlusOne{Nat(?), Nat.Suc({Nat(?))), Nat(?)).

Figure 6. Conjunction

Df — — 5[: TemplateBinding

| 3 substitute(=A, a=PlusCne=T R=)

4 substitite(g=B, a=Nat<A=)

5 bincing

L " _ JTemphteBinding
I

|
|8 substiute(f=A, a=PlusOne=<T R=)

9 substiute(g=B, a=Nat<A)

10 binging

11: p: Paff <PlusOne<Hai Nat Suc<Naib>, Nat>

[R —

Function application is the evaluation of
PlusOne(T, R) Nat(A). Figure 7 defines the parametrized
function PlusOne(T,R) as the implementation of the
appropriately stereotyped <FunctionalInter face>
beginning with Java 8. PlusOne(T, R) has one operation
add(nat Nat A) Suc A. Tt inherits operation
apply(f : T) : R where T and R are type parameters.
PlusOne(T, R) is data constructor Suc A in disguise. A
comparable UML profile for relevant Java Generics would
complement the type construction profile proposed here.

Figure 7 also defines two types useful in the application of
our profile : Unit and L. Unit the type with one value Unit
and _L the abstract class with no values. Unit is both a data and
type constructor. Data constructor Zero is constructed from
Unit. Zero and Unit are appropriately singletons with static
with private constructors. Parametrized data constructor Suc A
takes as argument a value of Nat A and returns its successor

in Nat A. Notice the abstract type constructor Nat A is
constructed only from either the disjunction of Zero or Suc A.
Finally L is the abstract type with no values. It is neither a
type or data constructor.

Figure 7. Function Application

_—
TR=R [" |
%TI’T_‘_ 4 «TypeConstructors
eFunctionallnterfaces — Nat
Function
oparations
+apply(f:T):R

T asa

| «DataConstructors zDataConstructors

o Zero Suc

||TT = attributes aperation

IR >_R | Jnstance - Zero +Suc(nat : Natv) : Suc
PlusOne

operations
-Zero() - Nat
+instance(unit : Unit) : Zero

apamations
+add{ nat : Mat) : Suc

«DataConstructors
«TypeConstructors
Unit
attibutes

-unit : Unit

=

operations
Unit{) - Unit
+instance() : Unit

Recall the evaluation of Pair <= (PlusOne <=
(T <= R)) x (Nat <= A) is set theoretic function
application resulting in the product (R = Suc (Nat A),T =
Nat A) where T < R.

C. Composition and Parametricity

While construction of monomorphic types from polymor-
phic constructors satisfies our intuition of building something,
operations on polymorphic functions can be equally useful.
Consider composition defined as o : (b = ¢) = (a = b) —
a — c. Polymorphic functions on parametric and logical types
compose such that fog = f(g(x)). Given functions prodSum
:: Pair a (Either ¢ b) — Either (a, ¢) (a, b) and sumProd
:: Either (a, ¢) (a, b) — Pair a (Either ¢ b) = { (prodSum o
sumProd) :: Either (a, ¢) (a, b) — Either (a, ¢) (a, b) , (sumProd
o prodSum) :: Pair a (Either ¢ b) — Pair a (Either ¢ b) }. See
Figure 8.

Figure 8. Function Composition

prodSum :: Pair a (Either ¢ b) -» Either (a, c) (a, b)
prodsum (Pair (x,e)) =
case e of
Left y -» Left (x, y)
Right z -> Right (x, z)
sumProd :: Either (a, c) (a, b) -= Pair a (Either ¢ b)
sumProd e =
case e of
Left (x, y) -» Pair (x, Left y)
Right (x, z) -= Pair (x, Right z)
comp :: Either (a, c) (a, b) -= Either (a, c) (a, b)

comp = prodSum . sumProd

comp' :: Pair a (Either c¢ b) - Pair a (Either c b)

comp' = sumProd . prodSum

Walder observed the composition of polymorphic func-
tions with monomorphic functions induced theorems for free.
[Wadler 1989] Given a polymorphic function fn :: Left x —

Left x, the monomorphic functions ord :: Char — Int and chr ::
Int — Char and the functor mapEither :: (a — ¢) — (b — d) —
Either a b — Either ¢ d we can for example state the following
theorem : (mapEither ord chr o fn) = (fn o mapEither ord chr).
Recall from Figure 6 the second monomorphic parameter chr
is not used by data constructor Left.

D. Categorical Semantics

Goguen first proposed the explicit junction between com-
puter science and category theory. [Goguen, 1989] The Cate-
gorical Manifesto [Goguen, 1989] promulgates seven dogmas
for using category theory to the faithful. We examine the cat-
egories of particular interest to an incomplete and preliminary
exposition of parametric and logical types to model driven
engineering in adherence to our belief in the manifesto.

1) Relational Type Constructors: . The category Rel is the
category whose objects are sets and whose morphisms are
binary relations between sets. A morphism R : A — B
between sets A and B is the relation R C A x B. Relations
R: A — Band S: B — C may be composed such that
(a,¢) e SoR <= {be B;(a,b) € R and (b,c) € S}.

Given a monad T' = (T, u,n) in Cat where T : C — C, i :
TT — T and 7 : Ide — T, the Kleisli category Cr of the
monad 7' is the subcategory of the Eilenberg-Moore category
CT on the free T-algebras. If U : CT — C is the forgetful
functor and F' : C — C7T is the free algebra functor, then the
Kleisli category is the full subcategory in the image of F. Rel is
the Kleisli category for Set. So for parametric type constructor
Pair <= A x B, we interpret Pair as the Kleisli category on
the carrier set A x B. See Figure 9. Note that F': C' — C7 is
the data constructor Pair(A, B) which wraps A x B in Pair.
It is called the section of u. p: TT — T unwraps A X B and
is called the retraction of F' where o F' = idaxp.

Figure 9. Section and Retraction

F:C—CT
- =

AxB Pair < (A x B)

idaxB w:TT =T

AxB

Retraction
Ax B
T

Section

AxB Pair < (A x B)
F:C—=CT p:TT —

2) Functors on Data and Type Constructors: Given cat-
egories D and T the functor F' maps the objects of D to
the objects of T" and the arrows of D to the arrows of T.
F : D — T. Type and data constructors provide a familiar

example of functor from computer science where D is the
category of data constructors and T type constructors. [Pierce
1988] Consider the diagram D with data constructors Zero
and Swuc a as objects in the category T of type constructor
Nat a. See Figure 10.

In the functor F' : D — T the arrow fr maps the object
Zero to Nat a and fr maps object Suc a to Nat a. The
sum Zero (+) Suc a is the disjoint union of the objects Zero
and Swuc a induced by the injections 77, and ir. The arrow
fr,r maps the arrows i;, and ip to the arrows fr and fgr
respectively. Nat a is the coproduct of Zero and Suc a if
there exist injections 77, and ip satisfying a universal property
fr.r such that fr, = fr roir and fr = fr roiR.

Figure 10. Coproduct

Nat a
T
f | R
' fL.R
|
|
|
ir : 1R
Zero ——— Zero (+) Suc a «—— Suc a

More generally a bifunctor B is simply a functor whose
domain is the product of two categories. B : L x R — T
Recall the left and right disjuncts from Example A. The
combined Left and Right disjuncts comprise a bifunctor from
the respective data constructors to type constructor Either. See
Figure 10. Notice the function mapEither in Haskell syntax
takes objects in Either a b to objects in Either ¢ d though the
assignment operation and the arrows of Either a b to the arrows
of Either ¢ d through function application. The result type of
functor mapEither :: (¢ — ¢) — (b — d) — Either ab —
FEither c d is called a sum type or coproduct.

Figure 11. Bifunctor Either
-- bifunctor either
mapEither :: (a -> ¢) -> (b -> d) ->
mapEither f _ (Left x) = Left (f x)
mapEither _ g (Right x) = Right (g x)

Either a b -> Either c d

3) Category of Products in Pair(A,B): Recall that
Pair(A, B) is the type constructor on the product of two
sets A and B. The Cartesian product of sets A x B is the
set of all ordered pairs (a,b) whose first coordinate is a
and second is b. Also recall Pair(A, B) is equipped with
operations A fst() and B snd() from which we recover the
first and second coordinates of pairs respectively. Given the
category P with objects A and B, the product A x B is an
object in P along with the arrows 74 : A x B — A and
mp : A X B — B satisfying the universal mapping property
that for every object P and pair of morphisms F4 and Fp
there is a unique morphism f4 p : P — A x B such that the
following diagram commutes. w4 and wp are the projections
of A x B from which we recover the respective objects
comprising the product.

Figure 12. Product
P

/ faz N\{s
1 2

Ae———AXxB——B

Given any category C with any objects A and B we call
the set of arrows Hom(A,B) = {f e C|f: A — B} its
Hom-set. Hom(A, B) is an object S in Set, the category of
sets with arrows h : S — S’. Any arrow g : B — B’ in C
induces a function Hom(A, g) : Hom(A, B) — Hom(A, B’)
in Set such that Hom(A4, g) = g o f determines the covariant
representable functor Hom(A, —) : C — Set. [Awodey 2005]
Further any object P and pair of arrows p; :— A and ps —
B determine an element (p;,ps) of the set Hom(P, A) x
Hom(P, B) in Set. And for any object P in a category C with
products the covariant representable functor Homg (P, —) :
C — Set preserves products if given functor F : C — D and
AxBinCand F(AxB)inD, then F(AxB) - F AxF B.
[Awodey 2005]

The category of sets Set helps build intuition in our cate-
gorical semantics. The empty set) serves as the initial object.
Every singleton {+} is a terminal object. The product in
Set is the Cartesian product of sets. The coproduct is the
disjoint union. And Set is complete and co-complete meaning
all small limits and co-limits exist. We have constructed the
functor category Set® from product category C. If C is a small
category with covariant functors from C to Set and natural
transformations as morphisms, then the functor category Set®
is a topos.

4) Elementary and Effective Topoi: Categorical interpreta-
tion of topoi originated in topological spaces. The abstract
properties of a topos Top are those of Set with an internal
logic. That internal logic is intutitionistic and higher order
thereby inducing both a Heyting Category and providing
the categorical semantics of the logic imputed to parametric
logical types. We de-emphasize the geometric interpretation
of Top in favor of the logical one.

An elementary topos Top is a category which has finite
limits, is Cartesian closed and has a subobject classifier. A
subobject classifier in a category C with finite limits is a
monomorphism true : x —) from the terminal object such
that for every monic m : U — X in C there is a unique
arrow xy : X — 2 such that the following pullback diagram
commutes. See Figure 13.

Figure 13. Pullback in Elementary Topos

|
U— %

XU

The object () is called the object of truth values, it contains
the generic subobject true and xy : X — € is called the
characteristic map of the subobject. Every monic m : U — X
arises as a pullback of the generic subobject along xy. The
pullback of a monic is a monic and because there is only one
arrow ! to * then yy is a monic. Subobjects generalize the
notion of subsets. In the category of sets the two element set
2 = {f,t} is the truth object 2. The subset classifier ¢ : x —
identifies element t as the generic subset. And given the subset
S C X the characteristic function xy : X — €1 is defined as
xs(xz)=tifz € S and xg(z) = fif x ¢ S.!is the function
from any subset to * in Set.

We derived the functor category Set® from the product of
sets in type constructor Pair <= A X B. Any elementary
topos such as Set is cartesian closed. Any category C is
cartesian closed if it has a terminal object * and for all objects
A and B both a product A x B and an exponential B“. Any
singleton {*} in Set* is the terminal object. Recall the covari-
ant representable functor Homg (P, —) : C — Set preserves
products A x B in set as F(A x B) - F A x F B. The
exponential B is the set of all functions B4 : Hom(A, g) =
Hom(A, B) — Hom(A, B') in SetC.

Finally, recall that in addition to our UML profile we define
Unit as a singleton class with one value Unit and L the
abstract class with no values. See Figure 7. Unit is the
terminal object and L the initial object allowing finite limits
and colimits in elementary topoi. Unit may also be named *
or 1 as above.

Recall from Example B, the product from which the functor
category Set® is derived is (PlusOne <= (T <=
R) x (Nat <= A). The effective topos Eff is an example
of an elementary topos with a natural numbers object. Eff is
an environment for higher order recursion where the functor
Hom(1,—) preserves the internal logic of Eff in Set®!,

A natural numbers object in a topos Top with a terminal
object 1 is an object N equipped with an arrow zero: 1 — IN
and an arrow suc : IN — IN such that for every other diagram
1% A5 A there is a unique morphism u : N — A such
that the following diagram commutes. See Figure 14.

Figure 14. Effective Topos Diagram

Zero suc
[N

4)]1\]'
q ‘u u
A

—5 A

The pair (g, f) is called the recursion data for u. Notice
g =uo zero and Vn € N, u(sucn) = f(un).

Consider function space evaluation in Example B. We
interpret the construction in the effective topos Eff with a
natural numbers object Nat A and an object PlusOne :
Nat A — Suc (Nat A), and the arrow v : Nat A —
PlusOne . Eff also has terminal object Unit and initial object
L. Following the recursion data in Figure 14, we construct
zero @ Unit — Zero and suc : ((Nat <= A) —
(Suc < (Nat <= A)). Substituting PlusOne for
f we have ¢ = u o Zero and u (suc n) = PlusOne (suc n)
the required proof that the diagram commutes, noting u© =
PlusOne. Also recall that function space evaluation is the
ordered product ((PlusOnex (Nat A))xNat A). Nat A and
PlusOne are inductive types interpreted as an initial algebra
of an endofunctor in Eff with finite limits and co-limits.

While we admit to an incomplete analysis and do not
claim to solve all the challenges of QVT, MOF and OCL,
parametric and logical types offer the following technical
advantages: 1) They represent in part Reynold’s abstraction
theorem following his finding “The way out of this impasse
is to generalize homomorphisms from functions to relations”
in a simple UML profile. [Reynolds 1983] 2) They admit a
higher order intuitionistic logic on relations in which their
construction and proof can be formally specified. 3) They al-
low parametric polymorphism with advantages in composition
and parametricity. 4) Their semantics can be formulated in
categories without abuse, formalizing definitions and theories
from computer science, carrying out proofs, discovering and
exploiting relations with other fields, dealing with abstraction
and representation independence. [Goguen 1989]

Equipped with conjunctive and disjunctive parametrized
logical types through our type construction profile we gain
both a formal type and categorical interpretation in our meta
modeling practice. Work is not complete on the logic. We
prove that the logic is sound and complete.

1

V. PROOF CALCULUS FOR LOGICAL TYPES

Although logical types offer certain advantages over the
naive meta model approach, we need to assess their use
in a proof system. We want our proof system to be sound
and complete. Given introduction and elimination rules our
system is sound when from the introduction rules we prove
the elimination rules do not invalidate the introduction rules by
deriving new consequences. The system is complete when we
can reconstruct arbitrary proofs created from the introduction
rules using the elimination rules without loss of information.

Logical types comprise a fragment of Heyting algebra
(HA). HA is a formalization of the BHK interpretation of
intuitionistic logic. HA is a bounded lattice with join A V B
and meet A A B operations. It admits T, aka true, | aka
absurd and implication A = B. True is constructed, absurd is
not. We will not use the universal V or existential 3 quantifiers.
HA does not admit the law of excluded middle, therefore the
contradiction A A — A is not a rule of intuitionistic logic. We
follow Pfenning’s approach to intuitionistic natural deduction.
[Pfenning 2004]

A. Introduction and Elimination Rules

A verificationist approach begins with definitions and proves
the definitions from introduction rules. We proceed by induc-
tion over the structure of the data and type constructors using
natural deduction. Natural deduction is a proof calculus with
a line denoting an inference and introduction and elimination
rules to its right. With introduction rules we read the inference
from the bottom to the top. With elimination rules we read
from the top to bottom. Labeled propositions which encode
an interpretation are said to be judgments.

Pair Introduction : We read the judgment on the bottom
to infer the judgment(s) on top using the rule to prove the
inference. Here the first judgment is the data constructor Pair
(A,B) true. The introduction rule (Pair) I reads that if judgment
Pair (A,B) is true, then judgment A must be true and if
judgment Pair (A,B) is true then judgment B must be true. We
verify the inference holds in a model theoretic interpretation.

B true

(Pair) 1
Pair(A, B) true

Atrue

Pair Elimination : We read the judgments on top to infer
the judgments on the bottom using each elimination rule to
prove the inference. The first judgment is again the data
constructor Pair (A,B). By elimination rule (Pair) F;, we infer
the judgment A true. Likewise, by elimination rule (Pair) Es,
we infer the judgment B true.

Pair(A, B) true

(Pair) F4
Atrue

Pair(A, B) true
(Pair) E5
Btrue

Either Elimination : A pragmatist approach proceeds by
inference from how a judgment is used. Observe the type con-
structor Either (L, R) true on top. For disjunction we only need
to prove one data constructor is true while preserving a model
theoretic interpretation. To its right we define two hypothetical
judgments. One, a proof of C given data constructor Left true.
Second, a proof of C given Right true. We read the judgment
Either (L, R) true to mean there is at least one interpretation
where either Left is true or Right is true. Elimination rule
(Either) E*Y reads that if we have a proof of C from Left
true than we can conclude C. Or if we have a proof of C from
Right true we can conclude C. Variables x and y are exclusive
to the hypothetical judgment in which they are introduced.

Left true Right true
Either (L, R) true C'true C'true
Either E*Y

C

Either Introduction : Notice it would be unsound to infer
judgment Left true from judgment Either (L,R) true in every
model theoretic interpretation of classical logic. From judg-
ment Either (L,R) true on the bottom we read (Either) I; to
mean only that there is at least one model theoretic interpre-
tation for Left true in intuitionistic logic, while recalling we
do not admit the law of excluded middle. (Either) I likewise
means only that from judgment Either (L,R) true there is at
least one model theoretic interpretation in intuitionistic logic
for Right true.

Left

Right true
(Either) I

Either(L, R) true

true
(Either) I
Either(L, R) true

B. Sound and Completeness Justification

We prove soundness by reduction and completeness by
expansion. Reduction checks that no new consequences are
discovered when applying the elimination rules to the proofs
derived from the introduction rules : we do not gain informa-
tion. Complete checks that we do not lose information when
reconstructing an arbitrary proof from the elimination rules.
Sound and complete checks are called justifications.

Pair Reduction : Reading the judgment from type construc-
tor Pair (A,B) true assume arbitrary proofs D of A and £ of
B from the pair introduction rule (Pair) I. By elimination rule
(Pair) F; we reduce Pair (A,B) true to A true, the subject
of proof D . Likewise by elimination rule (Pair) E, we
reduce Pair (A,B) true to B true, the subject of proof £. Our
justification is sound. We have used all the elimination rules
to the introduction rule and we have gained no information.
Soundness is local to the instant proof.

D &

Atrue Btrue
——— (Pair)I
Pair(A, B) true —R

(Pair)Ey

v

Atrue

D &

Atrue Btrue
— (Pair)I
Pair(A, B) true R

(Pair)Es

g ™

B true

Pair Expansion : From an arbitrary proof D of type con-
structor Pair (A,B) true we expand elimination rules (Pair)
Fy and (Pair) E5 to prove A true and prove B true from
introduction rule (Pair) I. We read from the top left that

from elimination rule (Pair) F; we can conclude A true from
data constructor Pair (A,B) true. Expansion allows “copies”
to check completeness of expansion, therefore we use a copy
of arbitrary proof D concluding B true from elimination rule
E5. We then verify that no information list lost by concluding
both A true and B true from the introduction rule Pair (A,B)
true and our local expansion is justified.

D
Pair(A,B) =g 1
D D
Pair(A, B) true Pair(A, B) true
(Pair)Ey —— (Pair)Es
Atrue Btrue
(Pair)I

Pair(A, B) true

Either Reduction : Recall introduction rule (Either) I; jus-
tifies a conclusion that under a model theoretic interpretation
of intuitionistic logic there is at least one case where data
constructor Left is true from type constructor Either (L,R).
We name this proof D. While preserving a model theoretic
interpretation we require only proof of C from either data
constructor Left or data constructor Right. By elimination
rule (Either) E%Y we reduce one of the two hypothetical
proofs to C. We choose the Left judgment, arbitrarily named
£. Similarly in our second case we provide proof of C from
judgment Right arbitrarily named F. Our local reduction has
gained no information and local reduction is sound. Note
that due to the expanded size of the proofs we elide true
from judgments in this and all future proofs without loss of
information.

- —y
D Left Right D
Left & F —z

(Either)I; = Left
Either(L, R) C C £
(Either)E*Y C
C
-z —y
D Left Right D
Right & F —y
— (Fither)Iy =pr Right
Either(L, R) C C F
(Either)E*Y C

C

Either Expansion : From an arbitrary proof D of type
constructor Either (L,R) we reconstruct the proof created from
the introduction rules (Either) I; and Either I using the
elimination rule (Either) E*Y without loss of information.
We say that local expansion justifies completeness. Recall
that from (Either) I; we conclude there is at least one model
theoretic interpretation of data constructor Left. Recall that
from (Either) Iy we conclude there is at least one model
theoretic interpretation of data constructor Left in intuitionistic

logic. We conclude (Either) E®Y from either Left or Right
without losing information. Our local expansion is justified.

Recall true is elided from judgments without loss of meaning.
D

Either(L, R) —E "
— —y
Left Right
D — (Fither)ly — (Either)ly
Either(L,R) FEither(L,R) FEither(L,R)
(Either)E*Y

Either(L, R)

We are done. We have justified claims that logical types are
sound and complete using their type and data constructors
using Gentzen’s natural deduction as our proof calculus.
No information is gained or lost. Using both verificationist

and pragmatist approaches to justification our system is “in
harmony.”

VI. REALIZABILITY IN THE EFFECTIVE TOPOS

This section introduces realizability in the effective topos
to the model-driven engineer. Ontology and fragments of first
order and description logics often challenge the advancing
model-driven engineer to further refine their approach to model
specification and interpretation. Introducing realizability in the
effective topos exposes engineers to the computability theory
underlying constructive or intuitionistic logic. Our main thrust
is to contrast non-standard truth values in a Heyting algebra
with a classical interpretation of first order logic.

We claim the construction of a type from a value is a witness
satisfying the proof of a proposition. Kleene proposed the
constructive proof of a proposition in the Brouwer-Heyting-
Kolmogorov (BHK) interpretation of inutionistic logic could
be formulated in terms of numerical codes that are effectively
computable. [Kleene 1945] Given a Godel numbering in n
€ N and recursive function f n, then f n is the result of
applying f to n. The result f n is a realizer. And we say that
f n realizes formula A in a Heyting algebra or is a realizer
of the BHK interpretation. We make no claims of efficiency
in Godel numbering.

Effective topoi are elementary topoi with a natural numbers
object and an internal logic with finite limits and co-limits. The
natural numbers object is recursive. Recall the internal logic of
the effective topos is also a Heyting algebra. Also recall model
theory based in classical logic admits an interpretation I of a
model M when the set of truth values V' = {True, False}
satisfy the model. [Tarski 1944]

Realizability in the effective topos implies for each sentence
1 in a Heyting algebra H A that f n realizes v in HA. We
define this subset P(IN) of N as the set of non-standard truth
values of HA. More generally a P(IN) valued predicate on a
set S is a function f : S — P(N) that associates with each
predicate in S a non-standard truth value that is a subset of
IN. [Vermeeren 2009] Given the non-standard truth values f n
realizes the sentences ¢ in HA and the interpretation / of
model M in H A is constructed.

Recall the subobject classifier true : * —) from the termi-
nal object to the object of truth values. Under a realizability in-
terpretation the subobject classifier becomes (f n) ¢ : * — Q.
Likewise the characteristic function xy : X — () becomes
xv = (fn) ¢ if n € P(N) and xy = L otherwise.

VII. CONCLUSION

Parametric and logical types offer technical advantages
over both the naive approach to meta models and QVT and
its dependencies on MOF and OCL. Parametric types allow
parametric polymorphism following Reynolds’ abstraction the-
orem. Parametric types may be formally specified in type and
category theory. They are composeable and induce theorems
that may be proven. We have shown how UML Templates
allow the specification of parametric types in UML.

Logical types lift logic from the object language to the
type system, constructively. Our novel UML profile of data
and type constructors and a few utility classes allowed an
interpretation of intuitionistic logic. We specified informal
semantics in sequence diagrams and formal semantics in type
and category theory and demonstrated their realizability in the
effective topos. We proved their soundness and completeness
in a fragment of a Heyting algebra using natural deduction.

There’s no shortage of future work following from para-
metric and logical types in model-driven engineering. Stan-
dardizing the profile may be of interest both to researchers
in the algebraic data types community who seek industrial
relevance for their research and model-driven engineers seek-
ing an alternative to first order valuations of classical logic,
description logic or ontology. Further technical work abounds.
Subtopoi of the effective topos appear relevant as is homotopy.
Further developing realizability in the effective topos will
allow model-driven engineers to better contrast classical model
theory with realizability. And further developing the BHK
interpretation and its extension to dependent types as well as
a proof calculus in the sequent calculus also appears relevant.

ACKNOWLEDGMENT

The author would like to thank George Thomas whose
friendship and support made this paper possible long before
it began.

REFERENCES

[1] J. Reynolds, Types, Abstraction and Parametric Polymorphism. Pittsburg,
PA. Carnegie Mellon. 1983.

[2] Object Management Group, Unified Modeling Language, 2.5. Needham
, MA. Object Management Group. 2015.

[3] Object Management Group, Object Constraint Language, 2.4. Needham
, MA. Object Management Group. 2014.

[4] Object Management Group, Meta Object Facility 2.0 Query View Trans-
formation Language 1.3. Needham , MA. Object Management Group.
2016.

[5] G. Bracha et al, Extending the Java Programming Language with Type
Parameters. Menlo Park, CA. Sun Microsystems. 1998.

[6] J. Goguen, Parameterized Programming and Software Architectures.
Proceedings of Fourth IEEE International Conference on Software Reuse.
IEEE. 1996.

[7] T. Mossakowski et al, Common Algebraic Specification Language. Com-
mon Framework Initiative. ESPRIT COFI Wroking Group. 2004.

[8] M. Abadi, An Imperative Object Calculus. Proceedings of the Second
ACM SIGPLAN Workshop on State in Programming Languages. Tech-
nical Report UIUCDCS-R-95-1900, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1995.

[9] P. Wadler, Theorems for Free. 4’th International Conference on Functional
Programming and Computer Architecture, London. 1989.

[10] C. Strachey, Fundamental Concepts in Programming Languages Lecture
Notes. Copenhagen, Denmark. International Summer School in Computer
Programming. 1967.

[11] J. Goguen, Categorical Manifesto. Technical Monograph PRG-72. Lon-
don, UK. Oxford Computing Lab, Programming Research Group. 1989.

[12] J. Reynolds, Polymorphism is Not Set Theoretic. Valbonne, France.
Research Report RR-0296. INRIA. 1984.

[13] J.M.E. Hyland, The Effective Topos. Amsterdam, North Holland. L.E.J.
Brouwer Centenary Symposium. 1982.

[14] A. Pitts, Polymorphism is Set Theoretic, Constructively. Edinburgh,
UK. Proceedings of the Summer Conference on Category Theory and
Computer Science, Springer Lecture Notes in Computer Science. 1987.

[15] B. Pierce, A Taste of Category Theory for Computer Scientists. Pittsburg.
Carnegie Mellon. 1988.

[16] S. Awodey, Category Theory. London, UK. Oxford Logic Guides. 2005.

[17] E. Willinik, Local Optimizations in Eclipse QVTc and QVTr using the
Micro-Mapping Model of Computation. EXE@Models. 2016.

[18] F. Pfenning, Intuitionistic Natural Deduction. Pittsburg. Carnegie Mel-
lon. Chapter 2. Automated Theorem Proving. 2004.

[19] S. Kleene, On the Interpretation of Intuitionistic Number Theory. Journal
of Symbolic Logic. 1945.

[20] A. Tarski, Introduction to Logic: and to the Methodology of the
Deductive Sciences. Dover books on Mathematics. 1936.

[21] S. Vermeeren, Realizability Toposes. Darwin College, Belgium. 1936.

[22] S. Lee, Basic Subtoposes of the Effective Toposes. Self. 2012.

